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sumARY

In an attempt to better predict turbulent-boundary-layer develop-
ment in aircraft cliffusers, a procedure based on the kinetic-energy
equation and an extended form of the momentum equation has been devised
for calculating the development of turbulent boundary layers, in adverse
pressure gradients, for that class of flows for which the fluid density
at all points and total pressure outside the boundary layer are
invariant. In the development of this procedure an effort was made not

9 oily to arrive at an analytical form that would allow examination of
the significance of the physical quantities involved but also to achieve
a high degree of consistency with the more recent results of turbulent-

! boundary-layer research.

Correlations, which are essential to the execution of the method,
of several elements of the basic equations in terms of quantities
regarded as controlling parameters are presented. These correlations
are strictly interim empirical relationships both as to numerical values
and as to the variables involved. It is to be expected that, with the
acquisition of more data covering a broader range of conditions, improve-
ments will be made in both the functional nature and the accuracy of the
correlations. A comparable and associated refinement of the basic
equations is likewise anticipated as more data are obtained.

Predictions, by this method, of turbulent-boundary-layer develop-
ment are compared with experimental results from several sources for a
number of cases of flow over flat plates and airfoils and in conical
diffusers. In the range of boundary-layer flow short of separation, the
agreement of calculated values with experimental values was, in most
cases, quite satisfactory; in some instances, however, definite disagree-
ment between the calculated and experimental results was noted. It is
believed, however, that good agreement has been obtained in enough

%
instances to justify continuation of effort along the-present lines,
particularly with respect to improvement of the correlations and refine-
ment of the equations.

-..~
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Because of the dominant

INTRODUCTION

part played ?ZYthe
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boundary-layer growth
in determining diffuser performance, theoretical diffuser analysis is
effectively a-problem fi-the “calculationof the boundary-layer-develop-
ment: For aircraft application the bounda~ layer is usually turbulent
and of a thicbess less than the half-span of the channel. A semi-
empirical procedure for the calculation of the development of such
boundary lsyetisin two-dimensional flows has been given byVon Doenhoff
and !Tetervin(reference 1). Attempts at direct application of this
and other existing methods to conical-diffuserflows, .hwever, have led
to difficulties both in the accuracy obtained under some conditions and
in the physical interpretation of the basic equations. The present
research was undertaken with the object of evolving a procedure which
would facilitate interpretation of the physical quantities and would be
applicable to conical-diffuserflows. This present paper is primarily
concerned with .ti.progress to date in achieving this objective. It
deals with a procedure developed for that class of flows for which the
fluid density at all points and total pressure outside-the bounda~ layer
are invariant, presents interim empirical correlations of certain
physical quantities essential to the execution of the procedure, and
includes an examination of the

D duct diameter

H boundary-layer

results obtained to date.

SYMBOLS

—

shape parameter (5*/e)

q ()dynamic pressure outside boundary layer 1 2@J

Re boundary-layer Reynolds number based on momentum
thickness (cup/~)

u velocity parallel to surface at a perpendicular distance
y from wall

u! root-mean-square fluctuating velocity in axial direction

u velocity parallel to surface at a distance greater than
or equal to 6 from wall

x longitudinal distance parallel to wall measured from
initial station

?—-
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T~2q

(’@q)s.Y.

(Tti2q)L.T.

~R/2q

T~/2q

Subscripts:

exp

k.. corr

a

duct-station locations measured longitudinally
sxis from initial station

airfoil chord

mean inlet Mach number

3“

on duct

perpendicular distance from wa.11to point at which
velocity u is measured

bounda~-layer thickness, defined as perpendicular
distance from wall to point at which contribution
to integrals for 6* and 0 is negligible

displacement thickness (~(+)

momentum thickness (~;(+

viscosity

density

wall shear-stress coefficient

wall shear-stress coefficient
Squire and Young (reference

obtained by equation of
2)

obtained by equation ofwsll shear-stress coefficient
Ludwieg and Til.lmann(reference 3)

(f )
5 1 a(pur2) @

turbulent-normal-stresscoefficient
~ “~ ax

(! 4

5 #

dissipation coefficient Tu
~ ‘~~

from

from

expertiental data

correlation curve
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ANALYSIS

Momentum Thiclmess

In the two-dimensional analysislof reference 1, the
of the momentum thickness was calculated by the momentum

rate of growth
equation

(1)

The Squire snd Young (reference 2) values
were used with this equation to calculate
momentum thickness.

ofl.sldn-frictioncoefficients
the rate of growth of the

The simplest apparent procedure for etiending equation (1) for
application to conical diffusers is to redevelop it in circular measure
by simple summation of forces in the longitudinal direction as given
in reference 4, for example. If the assumption is made that the
boundary-layer thickness is small in relation to the-duct diameter,
the following approximate equation results:

(2)

This equation differs from equation (1) by the presence of an additional
term which provides for the effect of the changing duct perimeter. The
same equation can be derived more rigorously by starting directly with
the Navier-Stokes equations.

In general, the values of momentmn thickness calculated by
equation (1) for two-dimensionalflow and by equation (2) for conical-
diffuser flow closely approximate the experimental values. Discrep-
ancies, local in character, between the calculated and experimental
gradients were, however, noted. Figure 1 shows typical examples of
experimental and calculated momentum-thickness gradient and momentum
thickness as a function of x as illustrated for the two-dtiensional
flow data from refe~nce S. This figure shins that over most of tie
range quite good agreement is found between experimental and calculated
momentum-thickness gradient and momentum thickness. Near the downstream *
end of the surface, however, the difference between expwimental and
calculated momentum-thickness gradient is appreciable; this difference
is responsible for the gradual divergence of the two curves for momentum ?
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thickness. Several investigators (references 6 to,9) have observed
and commented upon discrepancies of this type, the occurrence of which
seemed to be associated with proximity to separation. Newman (refer-

ence 10) suggested that this lack of agreement was due to evaluation of
the momentum equation in terms of mean velocity and the neglect of terms
arising from the presence of velocity fluctuations. Wallis (refer-

ence I-1)mentioned that the term arising from the Reynolds normal stress
is of increasing magnitude as separation is approached and tiplied that
this term might eliminate these discrepancies if included in the momentum “
equation: inclusion of this term gives

TO +de_ h-
dx 2q 2q

in which the turbulent-normal-stress
the equation

(3)

coefficient z#2q is given by

The corresponding momentum equation for conical diffusers @

()de_=O+=R Qql+; ‘=
dx 2q 2q qdx -mdx

(4)

(5)

An examination of equation (3) was made by using the two-dimensional
data of reference S and the results are illustrated in figure 2. The

()To “CR
solid curve -+—

2q 2q
was obtatied by solution of equation (3) in

which the slopes ~ used were obtained from a curve faired through

the experimentally measured momentum thicknesses. A curve of the Squire
and Young skin-friction coefficient (T()/2q).soyeis also given in this

figure. The decreasing value of the Squire and Young skin-friction——
coefficient with increasing longitudinal distance is due to increasing
boundary-layer Reynolds number. The values of turbulent-normal-stress
coefficient ~R/2q evaluated from hot-wire measurements in refer-
ence 5’are included in figure 2. It is apparent that the sum of the
turbulent-normal-stress coefficient %~2q and the skin-friction
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coefficient (@&.Y., exceeds the value ~f the sum

evaluation of equation (3) from the 18-foot station to
the 22-foot-station.

Experiments by Ludwieg and Tillmann (reference 3)

NACA TN 2478

obtained by

approximately

by a hot-plate
technique have indicated that the skin-friction coefficient may &minish
with increasing shape factor H, a variable consideration of which was
beyond the scopeof the Squire and Young representation (reference 2).
Values of skin-friction coefficient- (~o/2q)L.Tm calculated from the

Ludwieg and Tillmami correlation (reference 3) are also shown in figure 2.
The sum of the values of skin-friction coefficient (zO/2q)LOTo and
the turbulent-nomnal-stresscoefficient q#2q gives a good approxi-

~o ZR
mation to the sum — + —

2q 2q
as evaluated from equation (3) from the

18-foot to the 22-foot station. The approxi~tion ceases to be good,
however, beyond the 22-foot station, the points departing greatly but
without apparent system from the curve. This deviation may indicate
significantincompleteness of equation (3) in this region. However, it
may be noted that the (q/2q)eW values also depart greatly and

apparently without system from the trend that-might have been expected
on the basis of preceding values. This departure suggests the alternate
possibility that the origin of the deviations may lie in increased
difficulty in determining the experimental value of r~2q at the
downstream end of the surface.

The change in turbulent=noql-stress coefficientwith increasing x
is noted in figure 2 to be o posite in direction to that of the skin-

( /2qffriction coefficient TO L T over this range, and the sum of

(~()/2q)LoT,
.0

and z~2q does not differ greatly from values of

(’%WS.Y, for the-first several feet-;

Because the pressure-gradientterm in equation (3) usually makes a
very substantial contribution to the rate of growth of momentum
thickness, the dtiferences resulting from the choice m? e uation (1) in
which (T@s.Y. is used or equation (3) i~which (J) 2qL.TC and
‘r#2q are used are not so great as might be surmised from examination

of figure 2. A better perspective is possiblt ibyreference to fig-
ure l(a), in which the use ofiequation (3) with (~~2q)LeTe and #2q

yields a curve coincident throughout most-of its length with the experi-
mental curve shown by the solid line in comparison with tie dashed line
which was computed from equation (1) with (cc~2q)S,Ye. The deviation of

the curve obtained by using equation (3) with ~0/2q) L.T. and ‘#2q

is indicated at the downstream end of the surface. Although the
rmnerical differences between the use of- (’W/2q)s.Y. and.the use of

.
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the SllmOf (’@q)LcTc and z#2q are indeed small in the case

illustrated, the concept of diminishing skin-friction coefficient with
increasing velocity-profile shape factor H as indicated by (ro/2~)L,T,

seems more logical than the concept indicated by (TO/2q)Soyc that the

skin-friction coefficient is independent of the velocity-profile shape.
On this basis, the assumption has been made that the use of equations (3)
and (~) with (rO/2q)L.T. and ‘q/2q is more nearly correct. In

subsequent reference to these equations by number, the use of

(TO/2q)L.T. and r#2q is intended.

Boundary-Layer Shape Parameter

The equation given in reference 1 for the rate of growth of the
boundary-layer shape factor is

#= e@o(&2.g7~)

[

e dq 2q——- 2.035’(H
dx 1-1.286) (6)

-;dxTo

Unlike the momentum equation, this expression is basically empirical;
moreover, it was developed for two-dimensional application and the
correct procedure for adaptation to conical-diffuserflow is obscure.
Attempts to use equation (6) for the calculation of diffuser flows were
generally discouraging. An example of such a case,with two-dimensional
thickness parameters is shown in figure 3. The calculated gradients
strongly exceed the expertiental gradients and the calculated values
of .H diverge from the experimental curve by a steadily ticreasing
margin. This example is typical of results obtained in analyses of a
number of similar flows. In some instances, adjustments could be made
in the numerical coefficients of equation (6) which would improve the
calculation for a given example of diffuser flow without perceptibly
altering the characteristics of the equation as applied to the airfoil
flows for which it was originally developed. These cases were special,
however, and no single set of coefficients was found that offered
substantial improvement in some examples without detriment in others.

Because of the difficulties and ambiguities M the use of
equation (6), a comparable equation was sought through analysis of the
kinetic-energy equations of the boundazy layer. As a result of this
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investigation, the following equation, for which
dimensional flow is presented in appendix A, was

NACA

the derivation
obtained:

‘m 2478

for two-

13u=.edo(3H-ly-Q +Q ‘S (3H - 1)2
dx

H(3H -1)-Z z
q.dx 2q

In this eqyation the term r~2q is defined as

J

5
~= T+*——
2q ~ 2qay

(7)

(8)

Inherent h the derivation of equation (7) is the assumption that the
actual.boti-dary-layervelocity distribution may be approximated with
acceptable accuracy by power profiles. An essentially identical equation
in more general form and derived by a more general process has been
pr,esentedby Tetervin andLin (reference 12). A comparison of
equation (7) with the comparable equation of-reference 12 is given in
appendix B. Tetervin and Lin (reference 12) point out that the equation
is equally applicable to three- and two-dimensionalflows.—.

The opportunity for determining whether equation (7) yields values
of dH/dx in agreement with experiment when a chosen skin-friction law
and measured values of rs/2q are used is seriously restricted because
of the paucity of data on the shear-stress distribution in a turbulent
boundary layer. In reference ~, however, are found hot-wiredata from
which the values of ~s/2q ‘maybe evaluated for several flow conditions.
When the experimental values of ~s/2q were used together with
(rti2q)L T , equation (7) yielded shape-factorgradients in good agree-

ment wit~ ~hose observed experimentally. This agreement is illustrated
in figure h, in which the solid curve gives the shape-factor gradient
derived from a curve faired through the experimental data, &d the points
indicated are calculated as just described.

Equation (7) as derived and applied in the present analysis is based
upon mean velocities and neglects those terms-which would arise from
turbulent normal stresses. The order of agreement between .valuesfrom
equation (7) and from experiment has been such as to justify this
omission in calculating the growth of the shape factor for all conditions
investigated. Subsequent to the preparation of the cm-rent analysis,
other research workers at the-Langley Laboratory have supplied an
ektended form of the energy equation incorporating turbulent-normal-
stress terms. Because both the momentum and kinetic-energy equations

.1

-,
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are derived from the Prandtl boundary-layer equation, the inclusion of
the Reynolds normal-stress term in the momentum equation seems to
~equire its use in the kinetic-energy equation. It has been found,
however, that, for the data of reference ~, the net change in calc~ated
rate of growth of shape factor arising frgn the inclusion of these
additional terms is indeed quite small and in the present investigation
they are omitted.

If equations
layer development

Appendix-C gives the details of this investigation.

CORRELATION OF STRESS COEFFICIENTS

(3) and (7) are to be used for calculating boundary-
from known values of displacement thickness, moment~

thickness, and shape factor and from stream conditions outside the
boundary layer, it is necessary to express the three stress coefficients
T~2q, T~2q, and ~R/2q directly or indirectly in terms of the

(assumed basic variables nondimensional pressure gradient
0 dq
q ti’

boundary-layer shape factor
)

H, and boundary-layer Reynolds number ~ ,
The fundamental correctness of such a representation, however, is
doubtful. Dryden (reference 13) has pointed out that the turbulent

k fluctuations and turbulent shear stress at a point in the boundary layer
cannot be regarded as directly related to the mean speed and its deriva-
tives at that point. The possibility exists, hcwevero that such

5 representations, although fundamentally inexact, may be adequate for the
purpose of calculating momentum-thickness and shape-factor gradients from
equations (3) and (7). Furthermore, it is hoped that a more successful
approximation for a coefficient might be obtained by an integration
across the boundary layer than would be possible by representing the
value of the integrand at any local point within the boundary layer. In
view of this possibility of adequacy for the purposes intended and the
obvious utility of such representations if found, an investigation to
find such representations was undertaken.

With regard to the correlations that follow it is emphasized that
these correlations represent those which have given the best results in
the simplest form for the data that have been examined to date. They
are strictly empirical and are regarded as interim representations only.
As more data covering a broader range of conditions become available, it
will be necessary to revise these correlations not only for greater
numerical accuracy but also for improved correctness of representation.

Skin-friction coefficient (%O/2q)LoTe.-

(reference 3) from their experiments with the
●

Ludwieg and Tillmann

hot-plate technique

—
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reported their fhlings in the form of the following equation for the
skin-friction coefficientiin terms of the Reynolds number ~ and
shape factor H:

(q)To

7L.T. =
0.123

0.268 ~ ~oo.678H (9)
Re

This equation is plotted in figure S for several values of H. The
scope of the experiments in reference 3 was insufficient to create a
feeling of confidence that--othervariables, not considered in the
analysis, may not have influenced the results. In view of the good
results obtained in the present investigation by using this represen-
tation, however, and the-lack of definite evidence to the contrary, the
representation of skin-friction coefficient from reference 3 has been
adopted for the present analysis.

Dissipation coefficient %s/2q.- A representation of ~s/2q as a

function of
0 dq

- am, H, and ~ was obtained from a detailed study of

data representing a large variety of combinations of flow conditions and
boundary-layer parameters. This representation appeared adequate for all ‘

dH
values of e —. The only directly measured values of

dx
Ts/2q available

P
were those of reference ~. For other combinations of flow conditions
from refe~nces 1, 8, and 9 and data from conical-diffuser tests, rs/2q
was obtained by solution of equation (7) for experimental values

0 dq dll
of. - - —, H, Re, and e ~. The correlation thus obtained is pre-

qdx
sented in figure 6.

Over the pressure-gradient range up to - ~ ~ = 0.cM)8the data from

independent sources were sufficienfio give reasonable confidence in the
accuracy of the representation. The data thatrwere tivestigated at
higher pressure gradients, although insufficient to establish the curves,
were not-contradictory to the extrapolation–shownby the dashed lines in
figure 6. For study of flow development--athigher pressure gradients,
these extrapolations are suggested for use”intil data sufficient to
establish their position with greater accuracy are obtained.

The precedure by which this correlation was developed started with
extensive plotting and cross-plotting of the coefficient ~s/2q against

e ~ H, and ~, in this order, inthe several basic parameters --
q dx’

search of trends. By assumption and trial of tentative algebraic
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representations of such apparent trends as could be detected, a semblance
of order was achieved. A linear variation with the nondimensional
pressure gradient was assumed, and an apparently systematic increase
in zs/2q with increasing H which appeared to be applicable over much
of the pressure-gradient range was found. “This result was cross-checked
by giving an algebraic representation to the variation of %s/2q with
shape factor in order to explore the variation with nondimensional
pressure gradient. With these general relations blocked out, the
algebraic representations were modified and refined to ticorporate the
characteristics of low-pressure-gradient boundary-layer development with-
out substantially altering the relationships determined at lsrger
pressure gradients. In these relations, the Reynolds number factor was
put in a form parallelto that of Ludwieg and Tillmann (reference 3)
for consistency. Because an orderly interrelationship of the.several
variables developed in the process, it was possible to effect appreciable
improvement in the representation by readjustment of the various
constants. In graphing the final equation the Reynolds number term and
zero-pressure-gradient- shape-factor term were grouped with the coef-
ficient Ts/2q for clarity of representation.

The order of dispersion of the data from the correlation ftially
adopted is illustrated in figure 7. In this figure the ratioof t~e
experimental value of ~s/2q to the correlation-curve value is plotted
against the ncmdimensional pressure gradient for five groups of data dis-
tinguished by the ranges of shape-factor values into which the data fall.

Turbulent-normal-stress coefficient q/2q.- Values of TR/2q
calculated from hot-wire data were obtained from reference S and
additional values for other combinations of flow conditions and boundary-
layer parameters necessary for the achievement of a correlation were
obtained from solution of equation (3) or (~) by use of data from
references 1, 8, and 9 and from conical-diffuser tests. The correlation

obtatied is given in figure 8. The coordinate 0 %, although a derived

quantity and not one of the basic parameters, is, however, a function of

the basic variables. Therefore ~ is an implicit function of the

basic variables. This parameter w~s adopted after a study of plots
against a number of variables and combinations thereof. Although
suggestions of trends appeared in several of the plots, the dispersion
of the data, wide as it is, was definitely less in the plot finally
selected. The degree of certainty associated with the values of the
various data points varies considerably and depends upon the method of
determination and the test conditions. Consideration was given to this
circumstance h constructing the curve given for the coordinates
selected. Some of the dispersion of the points in figure 8 may arise
from inability to fix the”value of ~#2q to the desired degree of
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accuracy by the-method employed. It is equally probable, however, that--- .-l

the dispersion shown may be indicative of the absence of a significant
correlating factor.

●

RESULTS AND DISCUSSION

The practical application of either equation (3) or (S) and
equation (7) to turbulent-boundary-layerdevelopment must be regarded
as essentially empirical. The utility of the equations is dependent on
the success achieved in attaining correlations for the factors T~2q,
Ts/2q, and ~R/2q,”and the degree of-success is measured by the accuracy
obtained in applying the equations. In the figures which follow
(figs. 9 to 19.),the accuracy of the analysis, in which the empirical

—

representation of the--severalcoefficients is treated as an integral
part, is demonstrated by comparisons between experimental-and calculated
values of momentum thickness e and shape factor H for a represen-
tative variety of examples. These demonstrations are made b~two
procedures. In the first of these procedures, the gradients of e
and H are calculated from equation (3) or (5’)and equation (7) from

experimentally determined values of - ~~j H, and ~ at each #oint >

of measurement. These gradients are pldtted against distance along the
surface and integrated by means of an integraph to obtain curves of (3
and H. These curves are intended to show the general nature of..local

.

agreement between calculated and e~erimental values in a manner as
free as possible of errors arising from inaccuracies in upstream regions.
These curves are identified by the phrase IIlocalcheck.!? Th&second
procedure for examining the accuracy of the method is to calculate the
development of 0 and H as a function of longitudinal distance ky a
step-~-step integration in which only the–stream conditions at the
edge of-the boundary layer and “theinitial values of tl and H are
used. Curves of. 9 and H as a function of x or X, obtained~
this processj are identtiied as ~fpredictedl!curves and are intended to
show by comparison with the “local checklfcurves the extent to which
cumulative errors of integration affect the result.

Two-dimensional flow.- The first of these examples (fig. 9) is for
the two-dimensional data of reference ~. The agreement obtained is

excellent by either method for both 9 and H; however, it should be
borne h mind that these data, which were much more detailed than any
of the data fran other sources, were drawn upon heavily in formulating
the analysis.

Figure 10 shcws results as applied to the data of reference-9
obtained from tests on a flat=plate with a boundary layer of the same
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general size as that of reference S but generated in a channel differing
somewhat in geometric detail. As the end of the channel is approached,
the calculated values of f3 deviate from the experimental values. Fig-
ure 11 shows results as applied to the very similar tests of Wieghardt
(reference 8).

The results applied b additional data from reference 9, where the
pressure gradient on the flat plate was adverse to only a very slight
degree, are presented in figure 12. Agreement in H is especially
good; the calculated values of momentum thickness 0 are slightly above
the experimental values at the downstream end. In this example, the
contribution of the pressure gradient to the rate of change of shape
factor is very small, and it is to be expected that the Reynolds
number ~ should be the dominant influence in determining the value of
shape factor H. That this presumption appears to be valid is illus-
trated in figure 13 h which the experimental values of shape factor
from figure 12 are plotted against the Reynolds number ~ together With
a curve obtained by a fairing of the experimental data taken on a flat
plate at zero pressure gradient, both those of Ludwieg and Tillmann (ref-
erence 3) and also those of Schultz-Grunow (reference l-h).

As a final case of two-dimensional flow, figure 14 shows the
.

calculation made for the data from the example of boundary-layer develop-
ment over a two-dimensional airfoil, cited in reference 1. Here again
the agreement is generally good, with the notable exception of the last.
point which immediately preceded separation. In this specific example,
the result obtained by the present method is unsatisfactory And not so
good as that shown for this example in reference 1.

Conical-diffuser flow.- Fwr examples of boundary-layer flow in a

conical diffuser are shown in figures 1S, 16, 18, and 19. The diffuser
for these examples was a 12° cone with a 2:1 outlet-~o-inlet area ratio
and a 21-inch-diameter inlet. Calculations were started at the first
measuring station downstream of the faired junction between tie cylin-
drical inlet duct and conical section. Calculations upstream of this
point, although considered generally satisfactory, are not offered as
evidence of the accuracy of the analysis because of the insufficiency of
experimental data in this region where the pressure changes most rapidly.
The first of this group of figures (fig. 1S) is for an inlet boundary
layer having a momentum thickness of 0.00217 foot and a shape factor
of 1.226 at a mean Mach number in the approach duct of 0.27. The second
(fig. 16) is for the same Mach number with an inlet-boundary-layer
momentum thickness of 0.0112 foot and a shape factor of 1.220. For both
of these figures the agreement between thee&y and experiment is quite

●. good except at the final points. The station at which the final points
were obtained actually was in the upstream end of the cylindrical
discharge duct rather than in the diffuser proper. Because of this

1 circumstance, the validity of using these points to assess the accuracy
of the procedure is questionable.
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The conical-dtifuserflow illustrated in figure 16 is that used in
figure 3 to illustrate the inadequacy of equa~ion (6). The results
obtained with equation (7) plotted to the same coordinates as those of
figure 3 are shown in figure 17. The improvement in agreement as
obtained in equation (7) is evident from a comparison of figures 3 and 17.

Although the present analysis is for incompressibleflow, the
results appear to be acceptable.for moderately high speeds, as illus-
trated by figure 18, in which calculations are presented for an initial
boundary-layer momentum thickness of 0.00148 foot, a snape factor
of 1.22s, and a mean inlet Mach number o&O.43. The principal discrep-
ancy is at the las~oints. In figure 19, calculations are shown for an
initial momentum thickness of 0.0112 footj a shape factor of 1.223,
and a mean inlet Mach number of 0.%.

Separation.- It is not the purpose of t~s paper to propose new

criteria for the calculation of the point of separation of the boundary
layer nor to consider the relative merits of such criteria as may have
been proposed by others. It is of interest to note, however, that in the
process of making the calculation of the boundary-layer development--for
the data of reference S the trend of the calculated skin-friction-
coefficient curve was observed to be tiowardzero at a point at which
separation had been established by direct measurements in the original
experiment. This trend is illustratedin figure 20. Although the
Ludwieg and Tillmann correlation (reference 3) makes the skin-friction
coefficient (T()/2q)LT asymptotic tozeroas the shape factor H. .
becomes infinite, at the last point at which measurements were made
prior to the ~ccurrence of separated flow, it appears that the rate of
increase of the shape factor H with distance is itself increasing at
a rate sufficient to give the curve of skin-friction coefficient

(Td2q)L.T. a trend suggestive of a finite int-ercepton the X-axis.

APPLICATION

The preceding discussion has been concerned with the accuracymf the
analysis which was examined by application to..arepresentative group of
exsmples by two methods. Inasmuch as the principal anticipated utility
of the current analysis would be the prediction of.the boundary-layer
development; the accuracy of the analysis, as.demonstrated by the second
procedure (performing a stepwise integration using only the initial
values of e and H and stream conditions outside the boundary layer),
is of particular interest. The necessity of repeated solution of
either equation (3) or (~) and equation (7), however, renders this st-ep-
wise calculation especially inconvenient. In order to facilitate

,

.
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execution of this procedure, the terms of either equation (3) or (~)
and equation (7) have been grouped and graphed in a convenient manner.
The analysis as so organized is given by the following equations together
with associated figures:

ew.1+11
dx

For two-dimensional flow:

de—=
dXm

+Iv+v

For conical diffuser flow:

Algebraic expressions corresponding
IV, andV are given h appendix D.

The terms I and II in equation

(lo)

(11)

(12)

to the graphs of terms I, II, III,
.

(10) are obtained from figures 21
and 22, respectively, as functions of the nondimensional pressure

e ~ and the shape factor H.gradient --
qdx Term I is read directly from

figure 21. Term II is obtainedby dividing the ordinate of figure 22
by ~0.268. Although the curves of figure 22(a) appear to have

e dq
a common intercept at – — = O, some displacement of the intercept

qdx
actually occurs for different values of H, and this displacement is of
importance when developments at very small pressure gradients are to be
calculated. An enlargement of the graph for small pressure gradients
is given in figure 22(b), and the zero-pressure-gradient intercepts are
plotted as a function of shape parameter in figure 22(c). TermIII for
equations (IL) and (12) is given in figure 23 as a function of the

0 ~ and shape factor H.nondimensional pressure gradient - -
qdx Term IV

‘s (@2q)L.T.. and is represented in figure S as a function of the

Reynolds number ~ and shape factor H. TermV is ~2q and is
represented in figure 8 as a function of the shape-factor-growthcoef-

ficient El~ which is made available by the solution of equation (10).

For calculating the bounda~-layer growth in a conical diffuser the duct
dimensions must be known and equation (12) should be rised.
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CONCLUSIONS

A procedure based on the kinetic-energy equation and an extended”
form of the momentum equation has been devised for calculating the
development d turbulent bounda~ layers, in adverse pressure gradients,
for that class of flows for which the fluid density at all points and
total pressure outside the boundary layer are invariant-. In the develop-

—

ment of this procedure an effort was made not only toarrive at an ana-
lytical form that would allow examination of”the significance of the
physical quantities involved but=so to achieve.a high degree of con-
sistency with the-more recent reailts of turbulent-boundary-layer
research.

Correlations, which are essential to the execution of the method,
of several elements of the basic equations in terms of quantities
regarded as controlling parameters are presentmtl. These correlations
are strictly interti empirical relationships both as to numerical values
and as to the variables involved. It is to be expected that, with the
acquisition of more data covering a broader range of conditions, improve-
ments will be made-in both the functional nature and the accuracy of the
correlations. A comparable and associated refinement of the basic
equations is likewise anticipated as more data are obtained.

Predictions, by this method, of turbulent-boundary-layerdevelopment
are compared with experimental results from several sources-for a number
of cases of flow over flat plates and airfoils and in conical diffusers.
ll”the range of boundary-layer flow short d separation, the agreement
of calculated Valu=-tith experimental values was, in most cases, quite
satisfactory;“in some instances, however, def_@i&disagreement between
the calculated and experimental results was noted. It is believed,
however, that good agreement has been obtained in enough instances to
justify continuation of effort along the present--lines,particularly
with respect to improvement of the correlations and refinement--ofthe
equations.

.

Langley Aeronautical Laboratory
National Advisow Committee for Aeronautics

Langley Field, Va., April 26, 19~1
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unit

DERIVATION OF EQUATION

SHAPE

AHENDIX A

FOR RATE OF GROWTH OF

FACTOR (EQUATION (7))

BOUNDAHY-LAYER

The two-dimensional equation for the loss of kinetic energ per
length, normal to the direction of flow~ is given in reference 7 as

s5 5
+Y=& J’( 12 )12

pu~u -~udy
o 0

(Al)

The kinetic-energy thiclmess of the boundary layer is defined as

If equation (Al) is divi.dedby U and the definition for the
kinetic-energy thickness 53 is substituted in the right-hand side of
the equation, the following equation results:

J’
5 *

~ dU353
%Y=~~

o ‘*

Z-

By substitution of the definition for. ~s/2q

equation (A2) becomes

Ts 1 1 dU353—=. —
2q 2u3 dx

(A2)

(A3)
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~“”‘clifferentiating the right-hand side of equation (A3)

and substituting the relation

~u~=q-”
dxdx

the following equation is obtained:

‘cS (1 d53 +
)

3 53 dq—=— —- ——
2q2dx 2qdx (A4)

If the shape of the velocity profile is assumed to be represented
.

by the relation

where

2
n =—

H-1

it can be shown that-kinetic-energy thickness 63 may be represented
by

,
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.
By transpostig terms and substituting the representation given

for 53, the following equationis obtained from equation (Ah):
v

’53 d LH

()

Ts 3 53 dq
Y3Z-=#~=2&———— 2qz

Differentiating the
terms yields an equation

pH
—= H(3H
dx

19

left-hand side of this equation and transposing
of the following form:

.

(A6)

Substituting the momentum equation (equation (1)) and the definition for
53 (equation (A~)) into this relation yields the kinetic-energy equation
for the rate of growth of boundary-layer shape factor H in its final
form for the present analysis

@= _E~H(H- 1)(3H -1) ‘o ‘S (3H - 1)2

dx q&~’@3H-Q- ~~ (A7)
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e

COMPARISON OF

WITH

APPENDIX B

EQUATION (7) OF THE PRESENT ANALYSIS

EQUATION (13) OF REFERENCE 12

Equation (13) in reference 12 is given as

with the following accompanying definitions:

V. is the velocity perpendicular to the Wall at the walJ (y = O),
and p is an exponent related to the profile shape. Substitution
of these definitions in equation (Bl) and use of the relation

(Bl)

-.

.

.

.
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gives the following equation:

@+_ _:~H(3H- 1)(H - 1)
dx 2 +~H(3H -1)+

‘O (3H -

/

1)2 lu~dy+ ‘O (H + 1)(3H - 1)
q~ ‘—

0 U% ET 4

The relation

ro

may be nondimensionalized

/

lU

oh

Ua’-c J’
5

#Y=- ~ au
#Y

o

in the following manner:

21

(B2)

Substitution of this relation in equation (B2) @elds an equation of the
following form:

p-I_ e dqH(3H-l)(H -’l) +~0
dx

~H(3H - 1) -
-<z 2

‘O (3H - 1)2

r

*
“vo (H + 1)(3H - 1)

~
ud;+T.~

~ ~~o ‘co y

5

Substituting the definition for ~~/2q

(B3)
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@to equation (B3) and noting that the term v@J becomes zero for the

solid-wall case being considered herein yields

@=-9 -qH(3H-l)(H-1) ‘S (3H - 1)2
dx

QH(3H-l)-—
qdx 2 ‘2q *q 2

The result obtained is the same as equation (7) of the present analysis.

.
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APPENDIX

EXTENDED ENERGY

The energy equation
coefficient terms is:

as extended to

c

EQUATION

include turbulent-normal-stress-

y@ - 1)(3H - 1) +ZO
~H(3H- 1) -

2

~H(3H- 1) -

~ (3H - 1)*
+

2q 2

in which, as before,

and the new term ~R1/2q is defined as

It may be noted that equation (Cl) differs from equation (7) by the

d
addition of the terms in ~ 2q and ~R?/2q. The sum of these two
terms, ditided by Cl,there ore, constitutes the correction to t,hecalcu-
lated Shape-factor gradient which is to be made to provide for turbulent
normal stresses. Figure 24 shows the experimental data of reference ~
and the shape-factor development calculated from equation (7), trans-
ferred from figure 9. (The curve of dH/dx, which was integrated to
obtain the curve of H in figure 9, has been added for more complete
comparison.) The dashed curve of figure 24(a) has been obtainedby
adding the turbulent-normal-stresscorrections to the solid curve, and
the integration of this dashed curve constitutes the dashed curve of H
against x in figure 24(b). In general, the depart~es, either in rate
of change or value of the shape factor, are not great. In interpreting
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figure 24, the significant item is the deviation of the dashed curves
frcm the solid curves, not the general position of either relative to
the data, because the empirical representation of ‘cs/2q was established
without regard to the turbulent-normal-stressterms.

H

,

.

,
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ALGEBRAIC EXPRESSIONS FOR TERMS OF EQUATIONS (10), (11), AND (12)
;

P

The algebraic expressions corresponctkg to the graphs of terms I, 11, III, IV, and V are
4
m

as follows:

e d.q (H- Q(3H-1)
TermI=-—=H

qdx 2

Tem II x ~0.268 = _ ~

{

* X lo-o.b76H 0.0246(H - I) -

[
~~167.2(H -

}
1.25)09535 - 35.15] [H(3H - 0.9) - o.ij

0 dq

()
TermIII=–—-l+~

qdx

Term IV = o z 0-123
%3”68 ~ 100.678H

()
~ 0.135

TermV= O.001,1 e= + 0.1870 ~
dx

It should be particularly noted that these algkbraic representations constitute a mathe-
matical- fitttig of the correlations obtained and should not under any circumstances be regarded

as having any other significance or applicability outside the range of the curves shown. G
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